Муниципальное образование Ейский район Муниципальное бюджетное общеобразовательное учреждение лицей №4 имени профессора Евгения Александровича Котенко города Ейска муниципального образования Ейский район Краснодарского края

УТВЕРЖДЕНО решение педсовета протокол № 1 от «31»августа 2020 года Председатель иедсовета

Н.В.Мосина

РАБОЧАЯ ПРОГРАММА

по курсу «Решение задач по физике»

Уровень обучения: среднее общее образование, класс – 10

Количество часов – 68

<u>Уровень</u> – базовый

Учитель: Гапонов А.А.

Программа разработана на основе:

«ФИЗИЧЕСКАЯ ХИМИЯ» Авторы: В. А. Белоногов, Г. У. Белоногова

Пояснительная записка

Программа предназначен для учащихся старшей школы, выбравших естественнонаучный, физико-математический, физико-химический профили или проявивших повышенный интерес к изучению химии. Данный курс — курс интегрированный, содержательно он связан с курсом химии, физики, математики основной школы. Изучение предлагаемого элективного курса направлено на углубление и обобщение знаний школьников о химическом процессе, в частности о его термодинамике, кинетике, состоянии равновесия, а также о поверхностных явлениях.

Несмотря на то что отдельные вопросы термодинамики и кинетики рассматриваются в учебниках химии и физики, представленной в них информации недостаточно для объективной оценки и понимания сути происходящих процессов. Полное их осмысление возможно лишь на стыке этих двух наук. К тому же на уровне микрочастиц деление процессов на физические и химические является довольно условным. Физическая химия изучает химические процессы, опираясь на физические теории и используя физические методы.

Предлагаемый элективный курс посвящён рассмотрению таких тем физической химии, как химическая термодинамика, химическая кинетика, химическое равновесие и поверхностные явления. Значительная часть элективного курса отведена практическим работам, бо́льшая часть которых имеет исследовательский характер.

Цели курса:

- расширение, углубление и обобщение знаний о химическом про- цессе, причинах и механизме его протекания;
- развитие познавательных интересов и творческих способностей учащихся через практическую направленность обучения химии и интегрирующую роль химии в системе естественных наук.

Задачи курса:

- формирование естественно-научного мировоззрения учащихся;
- развитие приёмов умственной деятельности, познавательных интересов, склонностей и способностей учащихся;
- углубление внутренней мотивации учащихся, формирование потребности в получении новых знаний и применение их на практике;
 - расширение, углубление и обобщение знаний по химии и физике;
- использование межпредметных связей химии с физикой, математикой, биологией, историей, экологией, рассмотрение значения данного курса для успешного освоения смежных дисциплин;
- совершенствование экспериментальных умений и навыков в соответствии с требованиями правил техники безопасности;
 - рассмотрение связи химии с жизнью, с важнейшими сферами деятельности человека;
- развитие у учащихся умения самостоятельно работать с дополнительной литературой и другими средствами информации;
- формирование у учащихся умений анализировать, сопоставлять, применять теоретические знания на практике;
 - формирование умений по решению экспериментальных и теоретических задач.

Основные идеи курса:

- единство материального мира;
- внутри- и межпредметная интеграция;
- взаимосвязь науки и практики;
- взаимосвязь человека и окружающей среды.

Учебно-методическое обеспечение курса включает в себя учебное пособие для учащихся и программу элективного курса. Учебное пособие для учащихся обеспечивает содержательную часть курса. Содержание п собия разбито на параграфы, включает дидактический материал (вопросы, упражнения, задачи, домашний эксперимент), практические работы.

На занятиях по данному курсу учащиеся углубляют свои знания основ химической термодинамики, химической кинетики, химического равновесия и поверхностных явлений. В результате изучения курса «Физическая химия» расширяется мировоззрение учащихся, развиваются познавательный интерес, интеллектуальные и творческие способности, формируются предметные, общеучебные и специфические умения и навыки школьников.

Курс содержит большое количество демонстрационных экспериментов и практических работ. По желанию учителя и в зависимости от оснащённости кабинета некоторым практическим работам можно придать исследовательский характер.

Использование в учебном процессе практических работ способствует обобщению учебного материала, расширяет возможности индивидуального и дифференцированного подходов к обучению, повышает творческую активность школьников, расширяет их Включение таких работ элективный курс прививает В исследовательский подход к их выполнению, помогает в овладении доступными для учащихся научными методами исследования, формирует и развивает творческое мышление, повышает интерес к познанию химических явлений и их закономерностей. Предлагаемые практические работы включают определение не только качественных, но и количественных характеристик процессов. Систематическое выполнение экспериментальных задач по количественной характеристике процессов развивает учащихся аккуратность, вырабатывает навыки точности при оценке результатов эксперимента.

Каждая практическая работа включает краткие теоретические сведения и экспериментальную часть. Работы проводятся в группах по 3–4 человека. Выполнение исследований требует предварительной подготовки: перед проведением эксперимента учитель работает отдельно с каждой группой учащихся.

Элективный курс допускает использование (по усмотрению учителя) любых современных образовательных технологий, различных организационных форм обучения: лекций, семинаров, бесед, практических и лабораторных работ, исследовательских работ, конференций.

В качестве основной организационной формы проведения занятий предлагается лекционно-семинарское занятие, на котором даётся объяснение теоретического материала и решаются задачи по данной теме. Для повышения интереса к теоретическим вопросам и закрепления изученнго материала предусмотрены демонстрационные опыты и лабораторный практикум.

Формами контроля над усвоением материала могут служить отчёты по практическим работам, самостоятельные творческие работы, тесты, итоговые учебно-исследовательские проекты. Итоговое занятие проходит в виде научно-практической конференции или круглого стола, где заслушиваются доклады учащихся по выбранной теме исследования, которые могут быть представлены в форме реферата или отчёта по исследовательской работе.

Планируемые результаты освоения курса

В результате изучения элективного курса на уровне среднего общего образования у учащихся будут сформированы следующие предметные результаты.

Учащийся научится:

- раскрывать на примерах роль физической химии в формировании со- временной научной картины мира и в практической деятельности че- ловека, взаимосвязь между химией и другими естественными науками;
- устанавливать зависимость скорости химической реакции и смещения химического равновесия от различных факторов с целью определения оптимальных условий протекания химических процессов;
- проводить расчёты теплового эффекта реакции на основе уравнения реакции и термодинамических характеристик веществ;
- прогнозировать возможность и предел протекания химических процес- сов на основе термодинамических характеристик веществ;

- соблюдать правила безопасного обращения с едкими, горючими и токсичными веществами, средствами бытовой химии;
- осуществлять поиск химической информации по названиям, идентификаторам, структурным формулам веществ;
- критически оценивать и интерпретировать данные, касающиеся химии, в сообщениях средств массовой информации, ресурсах Интерне- та, научно-популярных статьях с точки зрения естественно-научной корректности;
- устанавливать взаимосвязи между фактами и теорией, причиной и следствием при анализе проблемных ситуаций и обосновании принимаемых решений на основе химических знаний.

Учащийся получит возможность научиться:

- формулировать цель исследования, выдвигать и проверять экспериментально гипотезы о состоянии равновесия химических систем, энергетических эффектах процессов на основе термодинамических расчётов, о свойствах поверхности различных тел;
- самостоятельно планировать и проводить физико-химические эксперименты с соблюдением правил безопасной работы с веществами и лабораторным оборудованием;
- интерпретировать данные о тепловом эффекте, скорости реакции и влиянии на неё различных факторов, о состоянии равновесия, поверхностном натяжении, адсорбции, полученные в результате проведения физико-химического эксперимента;
- прогнозировать возможность протекания различных химических реакций в природе и на производстве.

Содержание курса

Тема 1. Химическая термодинамика (9ч)

Первый закон термодинамики. Термохимия. Закон Гесса. Следствия из закона Гесса. Зависимость теплового эффекта от температуры. Второй закон термодинамики. Энтропия. Определение возможности и предела протекания процесса. Энергия Гиббса. Энергия Гельмгольца. Зависимость энтропии и энергии Гиббса от температуры.

Тема 2. Химическая кинетика (8ч)

Скорость химической реакции и влияющие на неё факторы. Влияние концентрации реагентов на скорость реакции. Основной постулат химической кинетики. Кинетические уравнения односторонних реакций. (Формальная кинетика простых реакций.) Методы определения кинетического порядка реакции. Влияние температуры на скорость химической реакции. Каталитические реакции.

Тема 3. Химическое равновесие (4 ч)

Обратимые и необратимые химические реакции. Виды химического равновесия. Закон действующих масс. Константа равновесия. Влияние различных факторов на состояние равновесия

Тема 4. Поверхностные явления (13ч)

Поверхностная энергия. Поверхностное натяжение. Смачивание и несмачивание. Когезия и адгезия. Адсорбция. Адсорбция на поверхности жидкости. Адсорбция на поверхности твёрдых тел. Хроматография.

СОГЛАСОВАНО

Протокол №1 заседания МО учителей физики и информатики от «31» августа 2020г.

Руководитель МО

Сычева Е.В.

СОГЛАСОВАНО

Заместитель директора по УВР

Ткачук Л.А.

«31» августа 2020г.